
J .  Fluid Mech. (1993), wol. 247, pp.  589-601 
Copyright 0 1993 Cambridge University Press 

589 

On a uniformly valid model for surface wave 
interaction 

By YEHUDA AGNON 
Coastal and Marine Engineering Research Institute, Department of Civil Engineering, 

Technion, Haifa 32000, Ismel 

(Received 29 July 1991 and in revised form 10 September 1992) 

Nonlinear interaction of surface wave trains is studied. Zakharov’s kernel is 
extended to include the vicinity of trio resonance. The forced wave amplitude and 
the wave velocity changes are then first order rather than second order. The model 
is applied to remove near-resonance singularities in expressions for the change of 
speed of one wave train in the presence of another. New results for Wilton ripples and 
the drift current and setdown in shallow water waves are readily derived. The ideas 
are applied to the derivation of forced waves in the vicinity of quartet and quintet 
resonance in an evolving wave field. 

1. Introduction 
One or several waves may have a nonlinear interaction which modifies their 

velocities and gives rise to sum and difference wavenumber waves. We choose for the 
present discussion gravity-capillary free surface waves. 

In the case of a single wave, the change in frequency is referred to as Stokes’ 
correction and the sum and difference wavenumber waves are the second harmonic 
and the drift current (and wave setdown), respectively. The expressions for the drift 
current and setdown (Longuet-Higgins & Stewart, 1962) become singular when the 
wavelength is large compared to the water depth and the group velocity approaches 
the long-wave velocity (gh);. This is long-wave resonance. 

Resonance with the second harmonic exists in Wilton ripples. It occurs when the 
phase velocity of the first harmonic is close to that of the second harmonic. Pierson 
& Fife (1961) have found a bounded solution that exhibits changes in the wave 
frequencies. These result in detuning of the resonance. 

The interaction of two wave trains was studied by Longuet-Higgins & Phillips 
(1962) and by Hogan, Gruman & Stiassnie (1988, referred to herein as HGS). They 
found a second-order change in phase speed induced by each wave train on the other. 
HGS used the Zakharov equation to derive these changes for gravity-capillary 
waves. They encountered singularities when the two waves were members of a 
resonant trio. 

In  the present paper, we study the interaction of two waves, extending the kernel 
of the Zakharov (1968) equation so that it holds in the vicinity of trio resonance. 
When the two primary waves are members of a nearly resonant trio, they induce a 
first-order forced wave rather than a second-order one. In $2, we study the trio 
interaction of the two primary waves and the forced wave. We obtain a quadratic 
equation for the forced wave amplitude. The primary waves are found to have 
frequency shifts that are first order, hence the resonance is detuned. In  $3, we derive 
a kernel for quartet interaction that incorporates the detuning effect. The result is an 
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expression for the frequency shift of a wave train in the presence of another which 
is uniformly valid, at resonance and away from it. The special case of Wilton ripples 
(progressive and standing) is studied in $4, giving a uniformly valid result. Section 
5 is a treatment of long-wave resonance, where the setdown and drift current become 
first order. It is wave-mean-flow interaction. The mean flow is derived in an 
independent manner. Then the similarities to the results of $3  are discussed. In $6, 
we suggest application of these ideas to the derivation of forced waves in the vicinity 
of resonance, where the assumption of scale separation used in perturbation 
expansions may not hold. 

2. Trio interaction solution 

cannonical variables b(L, t )  defined by Zakharov (1968) : 
The interaction of surface waves is most conveniently studied in terms of the 

1 [ w ] : A  [lkl] A 

-b(k,  t )  = - ((k,t)+i 2w @(k, t ) ,  
x 2 Ikl 

where g and JS are the spatial Fourier transforms of the free-surface elevation, 6 ,  and 
the velocity potential at  the free surface, 4‘. k is the wavenumber vector, w the 
frequency from the linear dispersion relation and t is time. 

In §$2 and 3, we study the interaction of the two free waves and a forced wave 
which may be in near resonance with the free waves. 

Since we wish to account for trio resonance, we write the Zakharov equation in a 
form that includes trio and quartet interaction : 

-i JJya 2V~;{,,b*(kl, t )  b(k,, t )  S(k,+k, -k,) dk, dk, 

The interaction coefficients V(-) and Ware given in HGS and in the Appendix of this 
paper. They are functions of k,,k,,k, and w,, wl, w2. The asterisk denotes the 
complex conjugate. The Zakharov equation describes the time evolution in water of 
constant depth. No spatial modulation is considered. In (2.2) we have included only 
interactions that can be nearly resonant. We start by studying the case of nearly 
resonant trios, focusing on the leading-order trio interaction. In  $3, a more complete 
treatment will be given. 

Consider a primary wave field made up of two waves, and include the forced sum 
(+ )  or difference ( - )  wave. b may be written in terms of amplitudes B,, B, and B,: 

= B,(t,) 6(k-k,) e- iw~t+B,( t l )6(k-k,)e- iw~t+B,( t , )  6(k-k3)e-i(w1*wY)t, (2.3) 
where k, = k, & k, is the wavenumber of the forced wave and w, & w, its frequency, 
t ,  = d,  and e is the wave steepness. Since the nonlinear term is quadratic in e, trio 
interaction occurs on the slow timescale t,. This is why the two primary wave 
amplitudes B, and B, were taken to be functions oft,, a t  most. B, represents a locked 
wave (again, only the term that can lead to resonance, either sum or difference, is 
included). B, and B, are O ( E ) .  Away from resonance B, is O(e2) .  

b(k,t) = b,(t) 6(k-k,)+b,( t )S(k-k,)+b3(t)6(k-k3)  
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Denote by ,u the resonance deturiing : 

/”’ w3-(w1+w2); (2 .4)  

o3 = w(k,) is the free wave frequency of k,. Resonance occurs when p, = O(E) .  Tn that 
case, we shall see that B, = O(B) .  

We look for steady solutions with amplitudes A j  and frequencies Oj: 
Bj(tl)  =Ajexp (-i(Qj-wf)t); j = 1 , 2 , 3 ;  Aj real constants, (2.5) 

where no energy is exchanged among the wave modes. 
From (2.2) we get (including only trio interaction) 

where 
(2 .6)  

Let us assume that A ,  and A ,  are specified. Eliminating Q,, 52, and 52, we get from 
(2 .6)  and (2.7) a quadratic equation for A , :  

A+% A : - - A , - A , A ,  P = 0. 
(A,-*,) 2V 

If instead we eliminate A,, we get 

(2.8) 

Note that the right-hand side of (2.9) represents a contribution to  the quartet 
interaction of waves (1, 1, 2 , 2 ) ,  through trio interaction of wave 3 (which is induced 
by waves 1 and 2) with waves 1 and 2. Hence the quadratic appearance of V.  

From (2.8), we see that a t  resonance, A ,  and Q j - - w j , j  = 1, 2,  3 are all O(E) .  
This is in contrast with the non-resonant case, ,u + E ,  when Q, - w, z ,u and A ,  z 
- 2 V A l A 2 / p  = O(e2), while 52,-wj,j = 1,2 are O(e2) .  That is, the forced wave has a 
negligible effect on the frequencies of the primary waves. The frequency shifts Oj - oj 
represent detuning of the resonance. I n  the next section we shall see that result (2.9) 
appears in the corrected form of the quartet interaction kernel, a form which 
accounts for trio resonance. 

3. Derivation of a uniformly valid kernel for quartet interaction 
Stiassnie & Shemer (1987) have developed a scheme for computing class I (quartet) 

and class I1 (quintet) interaction, based on their modification of the Zakharov 
equation (Stiassnie & Shemer 1984). The scheme is based on separating the spectral 
components into free waves and forced waves : 

b(k, t )  = [B(k, t 2 )  +B’(k,  t ,  t 2 )  +B”(k, t ,  t z )  + ...I e-iw(k)t, 

B = qe), B’ = o(q ,  B” = 0 ( € 3 ) .  

(3.1) 
where t, = c2t, and 

If one excludes trio resonance conditions, B depends only on t,. 
The interaction equation in discretized form is 

a -  
-B, = -i 
at ?b, ,, ,,, BTB,B, 6(k,  + k ,  - k ,  - k,)  eiplt, (3.2) 

4 k, k ,  
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where p1 is the detuning: 

p1 = w+o,-ow,-ww,;  where w = w(k,+k,-k,) .  

interaction coefficient which includes trio interaction of any two free waves, with 
locked waves which are, in turn, forced by trio interaction of any two free waves, 
hence the quadratic terms in V .  8, may stand for B(k,) or B"(k,), if we let p1 be O(c2)  
or O ( i ) ,  respectively. 

HGS studied the interaction of two uniform wave trains. Looking for steady 
solutions to (3.2) of the form 

q,1,2,3 - - W,,,,,,,+quadratic terms in V (see the Appendix) is a modified quartet 

Bj(tz) =Ajexp[-i(Qj-wj)t]; j= 1,2,  (3.3) 

they immediately find for the shifted frequencies Qj the following generalized Stokes' 
corrections : 

Ql-w, = TlA;+2T,,,Ai, 
(3.4) I Q,-o, = T,Ai+BT,,,A?, 

where Tt = T l , l , l J 2  = T z , 2 , 2 , 2 ; T l , 2  = T,,,,,,,. 
We can relate these expressions to our results of $2.  Only trio interactions were 

discussed there. The corresponding term in HGS neglects the frequency shifts and 
uses the linear ws in the denominator. The terms in (3.4) that contain q, , include the 
trio interaction of waves 1 and 2 with wave 3, which is generated by trio interaction 
with waves I and 2. This appears in T,,, as the term 

2v/"%-(~if%)l. (3 .5)  

This term corresponds to the coefficient of 2A1Ai in (2.9), which reduces to the form 
(3.5) away from resonance. Near resonance we need to account for the frequency 
shifts and use the shifted Qj as was done in (2.9). Hence, we need to replace the term 
(3.5) in the expression for q,, (see Appendix) by 

2VAw3 - ( 0 1  f Q2)I .  (3.6) 
We obtain a kernel c, that is valid near trio resonance as well. This replacement is 
significant only when p, the denominator of (3.5) is small. Using the new form of 
T,,2, we obtain 

where 

We shall see that Tl,2 is the kernel with the singular behaviour removed. T,, T, and 
Yl,, are 0(1), while -2P/ (w3-Q3)  is Ob-l ) .  A: and A: are O(e2). Thus, away from 
resonance, Q, -ol (and Q,-w,) are O(e2). Near resonance, where p decreases to O(e) ,  
i21-w1 (and Q 2 - w , )  increase to O ( c ) .  Keeping only the leading term in the square 
brackets of (3.7) then leads to the results of $ 2  (equation (2.9)). 

In order to solve for A, and Qj, it is convenient to define 

y = Q1-wl+(Q,-O,) = p+(Q,-w,) 
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FIGURE 1. The dependence of_the normalized interaction coefficient on k, /k , .  E , 2  ( - - -  
compared with 4n2T,,/k, k i  (-). a,  = a,  = 0.01 cm. 2n/k ,  = I cm. 

.) is 

and add up (or subtract, for difference interaction) (3.7). We get a quadratic equation 
in y, the free-wave frequency shift 

where 
y2 -py -y  = 0, (3.8) 

] (3.9) 
p = , u u + ~ A : + T z A ~ + 2 r ; , , ( A ~ ~ ~ ~ )  = O(p,I52), 

7 = 4P(A;fAt)-p[qA:+ T, Ai+BT;,,(At+A;)] = O(t.')), 

are known. We see that a t  resonance, ,u = O(s) ,  we get y = O(e).  When p decreases to 
O(e) ,  the forced wave A ,  increases from O(s2)  to O ( E )  but remains bounded. Note that 
even when p is zero, the shift y is not. A ,  is given by (2.6). In  the non-resonant case 
the primary waves have a frequency shift which is O(s2) .  It is O(s)  when ,u = O ( F ) .  

In  figure 1 we show the dependence of g,2 = 47c2 q , , / k 1  k$ on k , /k ,  for the case 
presented in figure 5 of HGS: 2n/k l  = 1 cm. The waves are taken to be parallel. A 
region which includes two resonances is shown. The singular behaviour of c,2 
(dashed line) is compared to the expression in the present theory : c, normalized in 
the same way, computed with a1 = a2 = 0.01 cm. al ,a ,  are the wave amplitudes 
given by a, = (2k,/oi)4A,/27c (i = 1 , 2 ) .  The finite height of the resonance peak is due 
to the finite steepness of the waves. For infinitesimal waves, the resonance would be 
infinite (there would be no detuning). Indeed, computations show that steeper waves 
result in relatively smaller resonance (when normalized by A,A2 = O ( s 2 ) ) .  The 
discontinuity near k,  = 0.4k, is due to resonance of k, with its own second harmonic. 
This resonance is studied in the following section where we apply the theory to  the 
well-known special case of Wilton ripples. 

4. Wilton ripples 
An interesting special case of trio resonance is Wilton ripples. This is the simplest 

sum interaction resonance. In  this case, there is trio near resonance between a wave 
and its second harmonic : 

k, = k,; k, = 2k1; o, = 2w,+,uu. 

In  the terminology of HGS, we have a single wave interacting with itself. Looking 
for a periodic solution, we set 

52, = 2 9 , .  (4.1) 
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FIGURE 2 .  The dependence of the second harmonic a3 (in cm) on k J k ,  ( 2 n / k ,  = 2.44 cm). Shown 
are Stokes’ expansion ( -  . - .  -), Pierson & Fife’s result ( -  - - -), and present theory (-). a,  = 0.05 cm. 

Equation (3.7) now takes the form 

- 2 v  
Q , - w ,  = [ w3 - 2 0 ,  +1:,,]G. 

A ,  is given by 

This time y = 2 ( 0 , - w , )  and we have 

(w3-252,)A, = -V&. 

Y2-PY-Y = 0, 
where 

P=p+ZT; , ,A? ,  y = ( ~ P - ~ , u T ; , , ) A ; .  

If we neglect 2T;, A:  (which is O(A:) = O(s2))  by arguing that it is small compared 
to p, which is, say, O ( E ) ,  we get from (4.3) and (4.4) 

(A3 - r ~ / 8 V ) ~  -p2/64V2 = *A:. (4.5) 

Exact second-harmonic resonance occurs a t  

E ,  = ( g / 2 ~ , ) f ;  wo = ($1; (g3/2sO)t, (4.6) 

where g is gravity and 8, the surface tension coefficient divided by the fluid density. 
In water, Lo corresponds to a wavelength of 2.44 cm. 

If we set lc, = Lo + 6,6 4 lc,, we get 

p M gS/w,; V (4x2/2)-’ (4.7) 

and the surface elevation amplitudes of the two free waves a,  and u, 

A J a ,  w A3/u ,  E 27c(w,/2E0)~. 

Substituting (4.6)-(4.8) in (4.5) we get 

(a3-Q426)2-332 = iu?, (4-9) 

which is the result obtained by Pierson & Fife (1961). However, whenp tends to  zero, 
we may no longer neglect 2T1,,A; and (4.4) should be used. 

The solution of (4.4) gives a uniformly valid result that exhibits a smooth 
transition between the regimes near resonance and away from it. I n  figure 2 we show 
the dependence of u3 on p. The singular behaviour from a Stokes’ wave expansion 
given by (4.3) with 0, replaced by ol, is compared to the trio interaction solution of 
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(4.9) due to Pierson & Fife (1961) and to the uniformly valid quartet interaction 
solution obtained from (4.4), which bridges the regimes near resonance and away 
from it. a, is 0.05 em. 

The above analysis can be easily extended to trios of standing waves, as well as 
other problems where resonance is possible. This concludes our analysis of Wilton 
ripples. We turn to another important special case : long-wave resonance. 

5. Long-wave resonance 
For a single wave train, difference interaction is interaction with the mean flow. 

The expression for the long wave induced by a short-wave packet was given by 
Longuet-Higgins & Stewart (1962) in the form 

where tlo is the wave setdown and U is the mean current over the whole depth, h, 

:[ sinh(2kh) 2kh 1 c,=- 1+ 

is the group velocity, and 
C = [g tanh (Ich)/k]i 

is the phase velocity of the short waves. S, given by 

(5.3) 

is the radiation stress, where a is the short-wave amplitude. p is the fluid density. 
These are also the expressions for the mean flow and wave setdown given by 
Whitham (1974). When kh % 1, t1,, and U are O ( 2 ) .  As kh decreases, Ci+gh and the 
expressions (5.1) and (5.2) become singular. This is due to long-wave resonance. 

Djordjevic & Redekopp (1977) have obtained evolution equations for the case of 
long-wave resonance. In their solution, however, the long wave is free (undetermined) 
for the case of a wave train that is uniform to leading order. We wish to determine 
the long wave that is induced by the short waves over a timescale that is shorter than 
the timescale for evolution of the short-wave envelope (which is the timescale in their 
work). Our treatment is uniformly valid in the vicinity of the short-wave long-wave 
resonance, and away from resonance. 

We will not use the Zakharov formulation. It leads to the same results, but the 
derivation is more complicated than the direct approach. The reason is that ,  due to 
interaction with itself, the long wave will not be harmonic even if the short-wave 
envelope is. Thus, we shall obtain a partial differential equation for the long-wave 
potential which is valid for arbitrary short-wave envelopes. In fact, we are studying 
the interaction of a short-wave group with the current induced by it. The resulting 
resonance detuning is analogous to that of the trio and quartet interaction models of 
$52 and 3. 

Let us write the wave potential q5 and the free surface displacement 5 as 
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where 
cosh k(x  + h,) 

cosh kh 
$,, = t l )  exp (ikx) , k,, = &a(z,, tl)  exp (ikx). (5.5) 

do = 0(1), El, = O ( E ) .  x1 E EX is a stretched horizontal coordinate, characterizing 
amplitude variation. The rest position of the free surface is at z = 0. Averaging the 
continuity equation and the Bernoulli equation over the short scales, we get 

Eliminating Elo between the two equations we get 

where r = k tanh (kh)  (e.g. Agnon & Mei 1985. The quadratic terms in #o are required 
since $ox = O ( E ) ) .  The propagation of the short-wave envelope, a, in the presence of 
the drift’current q3 is given by 

Or1 

14’ + V g + $ o z  ) b21q = 0 (5.7) 

(e.g. Whitham 1974, Eq. 16.91). 
We look for solutions of the form 

* = 4x1 - (C, + do,,) 41 ; do = 4o[x1 - (Cg + do, ) 41. 
We get, after integrating (5.6), the following equation: 

cc: - F g  dox - 9h) @ox = 4Cg b21 + 0 ( g 3 )  > 

q = (k2 - cz + 2wlC/Cg) g2/4w2. where 

This is a quadratic equation for doXl: 

and its solution is 

Thus we can find U,  which is given by 

(5.10) 

(5.11) 

where ElpCh is the Stokes’ drift. 

However, when gh-C: is O ( E ) ,  we find that 
Tn the range gh- Ci = O(1), (5.10) and (5.11) yield the classical result (5 .2) .  

h El0 x - u = O(E). 
% 

(5.12) 

Let us relate these results to the previous sections’ results. We write for the long- 
wave frequency wo = w ( k 2  - k, )  = AOJ +p, where Aw = w2 - w1 is the modulation 
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frequency which tends to  zero for an almost uniform wave train. Then, the linear 
long wave speed is 

where Ak = k ,  - k,  = ko. The shifted long-wave frequency is related to the shifted 
short-wave frequencies by 0, = A 0  = D,-Q,. 

The presence of the drift current, , induces a Doppler shift 
+1 

Thus the shifted group velocity is 

It is also equal to the shifted long-wave speed 

52, AS2 
k, Ak 
- = (gh)i+ O(p).  

(5.13) 

(5.14) 

(5.15) 

So the two velocities match. The frequencies of the ‘short’ waves are shifted due to 
the interaction with the long wave. The frequency of the long wave, Q,, is shifted by 
the interaction with the short wave and with itself. 

found from (5.10) is real as long as 

(5.16) 

This condition may be violated in shallow water. I n  shallow water we have 
(gh-Ci)/C, z (gh) i (kh)2 ,  

@ = a / (k2h3)  < (2/3)1 

which is the criterion for the Ursell parameter (%) to  be small enough for dispersive 
wave theories (Stokes’ waves, KdV) to be valid, hence for the existence of a non- 
breaking wave train. 

Following the arguments used here, (5.10) can also be derived from (16.94-16.95) 
in Whitham (1974) which describe the interaction of the waves with the mean flow. 
A review of wave-mean flow interaction is given by Grimshaw (1984). Whitham 
obtains the above equations (5.1) and (5.2) through linearization of the wave-mean 
Aow interaction problem, assuming that the mean flow is smaller than the wave 
motion. For large Ursell parameter, the mean flow interacts resonantly with the 
waves and is comparable to the wave motion. We have treated this range by taking 
into account quadratic terms in U and El, and obtained (5.10). It was seen that the 
effect of the mean flow on the propagation of the wave group (Doppler shift) plays 
a crucial role in the theory obtained. Figure 3 shows the dependence of &, on the 
wave amplitude, a, from (5.12) as compared to the value given by ( 5 . 2 )  (kh = 1 ) .  The 
values are close even for fairly large Ursell parameter valuea for which, however, 
linearization is not valid. Hence, the present theory should be used to justify the 
results. The existence of very large ‘surf-beats’ in shallow water is confirmed by 
numerous observations, e.g. Guza & Thornton (1982). 

I n  the following section we suggest an application of the results in § § 2  and 3 to the 
interaction of many waves. 

q w 3g/4h. The condition (5.16) reduces to 
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ka 
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FIGURE 3. The dependence of the normalized setdown, kt, , ,  on the normalized wave amplitude, 
ku. The ‘linearized’ result ( - - - - )  is compared to the present model (-); kh = 1. 

6. Forced waves near resonance 
In  this section, we wish to examine the implications of resonance of the locked 

waves and suggest a way to modify the numerical scheme of Stiassnie & Shemer 
(1987) using the ideas of $52 and 3. We start from (3.1) and (3.2). When ,ul = 0(1), 
(3.2) can be integrated with respect to the fast time to yield 

the wave forced by Bl ,B2 and B,. We see that ifp1 = O(l) ,  then 

but if ,ul = O(e)  

This last possibility is not accounted for in previous work. Of course, the distinction 
among the different orders cannot be clear cut, in particular when we wish to perform 
computations. 

This is not a problem in the transition between ,ul = O(1) to ,ul = O(e) ,  since both 
give rise to a forced wave. The transition to O(e2), however, is not smooth. In  a 
computation scheme, a certain number of free wave components is chosen (e.g. five 
in Stiassnie & Shemer 1987) and the rest of the waves are taken to be forced waves. 

B;; = ~ ; ; ( t )  = 0(€3), 

B; = BE(tl) = O(E’).  

(6.2) 

(6.3) 

If we have a situation in which ,ul 2 e2 ,  use of (6.1) will give 

B = B ( t 2 )  5 E ,  (6.4) 

which is near the order of the free waves. This upsets the hierarchy of orders. Also, 
the integration leading to (6.1) which relies on timescale separation is less justified 
since the phase eiplt is varying on a timescale close to  t , ,  over which B,, B, and B, vary. 

A similar situation is encountered in the interaction of gravity-capillary waves. 
Here trio resonance may occur and the interaction is governed by (2.2). Similar to 
(3.1), the wave is written as 

[B(k, tl) +B’(k, t ,  t l )  + ...I e-iw(k)t, (6-5) 

where B = O(e), B’ = 0 ( e 2 ) .  

The problem of scale separation arises when 

is in the range ,u 2 e, 
= w o - ( w l + w z ) ;  wo = w(k,$_k,) 

We now recall that in 9 2 we obtained an equation for the amplitude of the forced 
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wave which was valid for all magnitudes of p. If we account for the phases, we can 
replace (2.8) by 

@ + ~ ) B ; - ~ B ~ - B , B ~  P = o 

for the sum interaction, and a similar equation for the difference wave. We propose 
this equation for approximating B1,2, the wave forced by B, and B,, in the vicinity 
of resonance. Similarly, in the case of quartet interaction, we write for three free 
waves B1,B,,B, and a forced wave B,, where k,  = k,+k, -k , ;  wo = w(k,), the 
following equations, derived from (3.2) : 

(52,-wb)BP = 2Tp,q,r,8B: B,B,; p = 0,1 ,2 ,3 ;  p + q  = V + S  = 3, (6.7) 

52,+52, = Q,+s1,, (6.8) 

where 0; = w p  + T!  IB,12 + 2 C 5'bp IB,12 

are the corrected frequencies, as in (3.4). Again we get a quadratic equation for B, : 
P+P 

[ -r*) * + - + ~ ] B ~ - ' B o - B I B , B ~  B f B ,  B*B P = 0 
B2 Bl 2T 

p,, the detuning is given by 

Similar equations are obtained for the other quartet, and quintet, interaction forced 
waves. The solutions offer a smooth transition as the value of p (or pl)  decreases and 
resonance is approached. 

Equation (6.6) or (6.9) yields the value of the wave forced by two or three waves, 
which are members of a nearly resonant trio or quartet, respectively. This is based 
on the assumption that the waves are in a steady state. This requires (unless there 
is an exact phase match of the forced wave) that the forced wave B, will be smaller 
than the O(s)  waves B,, B, and B,. From (6.9), we see that B,/Bl = O(e2/pl). We may 
find the accuracy attained in (6.9). By using the above ratio of B,/B, in (3.2), we find 
that the timescale for the evolution of B, is p;l (where the wave period is O( 1)). The 
corresponding evolution equation for, say, B,, gives a timescale of ,u1/s2. The ratio of 
these timescales is e4/,u:. Thus, the relative error in the approximation involving (6.9) 
is O(s4/p:). We have assumed that p1 > 2. If we take, say, ,ul M si, we get a relative 
error which is O(s) .  In  the case of trio interaction, we find from (6.6) that the relative 
error is O(e2/,u2). 

We have seen that as long as the waves are not too close to resonance, we may treat 
the additional wave as a forced wave by using (6.6) or (6.9). An example of the need 
for the correction discussed here is seen in figure 1 .  As noted in $3, there is a 
discontinuity in the curve for Fl,z, the corrected interaction coefficient for waves 
with wavenumbers k ,  and k,, near k2 /L ,  = 0.4. This corresponds to a wavelength 
27c/kz = 2.44 cm for which wave 2 is in resonance with its second harmonic. This 
leads in a naive calculation of $ , 2  to infinite values. After correcting the forced wave 
contribution due to that Wilton ripple, this singularity is removed, leaving only the 
discontinuity seen in figure I. 

The above method has implications on the free-wave evolution as well. The kernel 
T has terms with p in the denominator, the kernel for quintet interaction has terms 
with p or p1 in the denominator. We saw in $ 3  (equation (3.6)) that these are due to 
forced waves. We have also seen that the form involving the linear frequencies, (3.5), 

,u1 = u ; + w ; - w ; - w ; .  
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which is the expression normally used in the Zakharov-type equations, gives values 
which are too high as resonance is approached. This can be corrected by replacing the 
corresponding term by a term obtained using the solution of (6.6), say, in the quart.et 
interaction equation, as done in (3.7).  This means, for example, in the case of 5’i,2, 
replacing it by 

where Q3-w3  = y-p is found in the manner of (3.8) (it is sufficient to use the 
simplified, trio interaction, form derivable from (6.6) in the manner of $2) .  This is 
important when calculating class I and class I1 interactions (as in Stiassnie & Shemer 
1987) or when calculating quartet interaction for gravity-capillary waves. We note 
that for just five free waves, Stiassnie & Shemer had to  consider 3700 locked waves. 
This number is much too large to enable treatment of the full system. In order to 
account for approach to  resonance, the above approximation can be used. 

7. Conclusion 
There is a continuous increase in the magnitude of a wave forced by a number of 

free waves, as resonance is approached. We have illustrated this for the example of 
trio interaction. The growth of the forced wave is accompanied by an increasing shift 
in the free-wave frequencies. This detuning, in turn, limits the growth of the forced 
wave. We have obtained new expressions for the shift of the phase speed of one wave 
train in the presence of another, for Wilton ripples and for the wave setdown and 
drift, current, which are uniformly valid as resonance is approached. The ideas were 
applied to derive uniformly valid kernels for the Zakharov equation and for its 
modifications. 
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Research (Grant N0014-91- J- 1449). 

Appendix 
The interaction terms for the Zakharov equation kernel T(ko, k,, k2,  k3)  were given 

by HGS for gravity-capillary waves in water of infinite depth. We give here the form 
of the kernel for waves in water of finite depth. 

Denote T(k0, k1, k2, k3) = q, 1 , 2 , 3 ,  then 

2%:k-l, 12%L 0-2 - 2v$Tb,2-0 v ~ T ! - 3 , 3 - 2 v ~ 7 ~ - 1 , 1  ‘k:k,0-3 

w1-3 - w3 + w1 0 1 - 3 - ~ 1 + ~ 3  o ~ - , - w Z + W ~  
T o , 1 , 2 , 3  = - 

The second-order interaction coefficients are given by 
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where gj = IkjI tanh (Ikj)h) and w; = g ~ k j ~ + S o ~ k j / 3 ; j  = 0 , 1 , 2 , 3 .  
The third-order interaction coefficient 

w0,1,2,3 = w ( k 0 , k 1 , k 2 , k 3 )  

is given by 

60 1 

with 

and 
gikj = g(k,&k,) ,  w t k j  = o(k ,$k , ) ;  i , j  = 0 ,1 ,2 ,3 .  

R E F E R E N C E S  

AGNON, Y. & MEI, C. C. 1985 Slow drift motion of a two-dimensional block in beam seas. J .  Fluid 
Mech. 151, 279-294. 

DJORDJEVIC, V. D. & REDEKOPP, L. G .  1977 On two-dimensional packets of capillary-gravity 
waves. J .  Fluid Mech. 79, 703-714. 

GRIMSHAW, R.  1984 Wave action and wave-mean flow interaction, with application to stratified 
shear flows. Ann. Rev. Fluid Mech. 16, 11-44. 

GUZA, R.  T. & THORNTON, E. B. 1982 Swash oscillations on a beach. J .  Geophys. Res. 87,483-491. 
HOGAN, S.  J., GRUMAN, I. & STIASSNIE, M. 1988 On changes in the phase speed of one train of 

water waves in the presence of another. J .  Fluid Mech. 192,97-114 (referred to herein as HGS). 
LONGUET-HIGGINS, M. S. & PHILLIPS, O . M .  1962 Phase velocity effects in tertiary wave 

interactions. J .  Fluid Mech. 12, 333-336. 
LONQUET-HIGQINS, M. S. & STEWART, R. W. 1962 Radiation stress and mass transport in gravity 

waves, with applications to surf-beats. J. Fluid Mech. 13, 481-504. 
PIERSON, W. J. & FIFE, P. 1961 Some nonlinear properties of long crested periodic waves with 

lengths near 2.44 centimeters. J .  Geophys. Res. 66, 163-179. 
STIAssNIE, M. & SHEUER, L. 1984 On modification of the Zakharov equation for surface gravity 

waves. J .  Fluid Mech. 143, 47-67. 
STIASSNIE, M. & SHEMER, L. 1987 Energy computations for evolution of class I and I1 instabilities 

of Stokes Waves. J. Fluid Mech. 174, 299-312. 
WHITHAM, G. G. 1974 Linear and Nonlinear Waves. Wiley-Interscience. 
ZAKHAROV, V. E. 1968 Stability of periodic waves of finite amplitude on the surface of a deep fluid. 

J .  Appl. Mech. Tech. Phys. 9, 190-194 (Engl. transl.). 

20 FLM 247 




